
Algorithms

Lecture10

Linear Sorting

Sorting by Comparisons

Up to this point, all the sorting algorithms we examined

depended on comparing elements of a given set, in

order to sort the set. All the algorithms we came up with,

were either O(n lg n) or Q(n lg n) or O(n2).

One can ask: can we sort a set S, consisting of elements

from a totally ordered universe, in time O(|S|)?

The answer, as we might expect, is “yes, but…”

First of all, the negative result: sorting by comparisons is

(worst case) W(n lg n).

10/8/2013 2 91.404

Linear Sorting

..

10/8/2013 3 91.404

Linear Sorting

The main ideas are:

1.Every time you try to determine the relative positions of
two element you must make a comparison (decision).

2.The input (n elements) can come in any order.

3.There are n! ways in which n different elements can be
arranged.

4.A “sort” is equivalent to finding (by a sequence of
comparisons between two elements) the permutation of the
input that leaves the input set ordered.

5.Each such permutation corresponds to a leaf of the
“binary decision tree” generated by the comparisons.

6.The binary decision tree has n! leaves.

10/8/2013 4 91.404

Linear Sorting

Theorem 8.1: Any comparison sort algorithm requires
W(n lg n) comparisons in the worst case.

Proof: by the previous discussion, the binary decision tree
has at least n! leaves, and height h. Since such a binary
tree cannot have more than 2h leaves, we have n! ≤ 2h.
Taking the logarithm (base 2) of both sides:

 h ≥ lg (n!) = W(n lg n),

This means that there is at least ONE path of length h
connecting the root to a leaf.

Corollary 8.2: HEAPSORT and MERGESORT are
asymptotically optimal comparison sorts.

10/8/2013 5 91.404

Linear Sorting

Sorting NOT by comparisons

How do we do it?

• We must make some further assumptions.

• For example, we need to assume more than “the set to

be sorted is a set of integers”.

• More specifically, we assume the integers fall in some

range, say [1..k], where k = O(n).

• This is the idea behind Counting Sort. How do we use

it?

10/8/2013 6 91.404

Linear Sorting

..

10/8/2013 7 91.404

Ch.8 – Linear Sorting

..

10/8/2013 8 91.404

Ch.8 – Linear Sorting

Counting Sort: Time Complexity

How much time?

• The for loop of l. 2-3 takes time Q(k).

• The for loop of l. 4-5 takes time Q(n).

• The for loop of l. 7-8 takes time Q(k).

• The for loop of l. 10-12 takes time Q(n).

• The overall time is Q(k + n).

• The assumption on k gives that the overall time is Q(n).

10/8/2013 9 91.404

Ch.8 – Linear Sorting

Radix Sort l

What else can we use?

Assume all your integers (we are sorting sets of integers)

have d or fewer digits. Pad the ones with fewer than d

digits with leading 0s, for uniformity.

Assume the digits are on cards with 80 or so vertical

columns, each column with room for 10 (or more) distinct

holes (one for each of 0..9).

Use columns 1..d to store each integer.

Take a deck of such cards (with integers) and sort it.

10/8/2013 10 91.404

http://www.columbia.edu/acis/history/hollerith.html

Ch.8 – Linear Sorting

Radix Sort

10/8/2013 11 91.404

Ch.8 – Linear Sorting

Radix Sort

Lemma 8.3. Given n d-digit numbers in which each digit

can take up to k possible values, RADIXSORT correctly sorts

these numbers in Q(d(n + k)) time if the stable sort it uses

takes Q(n + k) time.

Proof: the correctness follows by induction on the column

being sorted. Sort the first column (using a stable sort).

Assume the set is sorted on the first i columns (starting

from the back); prove it remains sorted when we use a

stable sort on the i+1st column (see Ex. 8.3-3).

COUNTINGSORT on each digit will give the result (details?).

10/8/2013 12 91.404

Ch.8 – Linear Sorting

Bucket Sort

Assume all the values have equal (independent) probability

of appearing as elements of [0, 1).

• Divide the interval [0, 1) into n equal sized subintervals

(buckets) and distribute the n input numbers into the

buckets.

• Sort the numbers in each bucket (your choice of sort).

• Go through the buckets in order, listing the contents.

10/8/2013 13 91.404

Ch.8 – Linear Sorting

Bucket Sort

10/8/2013 14 91.404

Ch.8 – Linear Sorting

Bucket Sort

We observe that both of the for loops in l. 3-4 and 5-6 take

time O(n) to execute. We need to analyze the cost of the n

calls to INSERTIONSORT on l. 8.

10/8/2013 15 91.404

Ch.8 – Linear Sorting

Bucket Sort

Let ni be the random variable denoting the number of

elements in bucket B[i]. Since INSERTIONSORT runs in

quadratic time, the running time for BUCKETSORT is

The expected time is given by

We will show that E[ni
2] = 2 – 1/n, for i = 0, 1, ..., n - 1.

It should be clear that the expected number of items in

each bucket is the same: by the uniform distribution.

 10/8/2013 16 91.404

T n Q n O ni
2

i0

n1

 .

E T n E Q n O ni
2

i0

n1

 Q n E O ni

2
i0

n1

 Q n O E ni
2

i0

n1

 .

Ch.8 – Linear Sorting

Bucket Sort

Define the indicator random variables

Xij = I{A[j] falls in bucket i}, for i = 0, …, n - 1, j = 1, …, n.

Thus

To compute E[ni
2], we expand, square and regroup:

10/8/2013 17 91.404

ni X ij .
j1

n

E ni
2 E X ij

i1

n

2

 E X ijX ik

k1

n

j1

n

 E X ij

2

j1

n

 X ijX ik
1kn
k j

1 jn

 E X ij
2

j1

n

 E X ijX ik
1kn
k j

1 jn

Ch.8 – Linear Sorting

Bucket Sort

We now compute the two sums.

The indicator random variable Xij takes the value 1 with

probability 1/n and 0 with probability 1 – 1/n. The same is

true of Xij
2:

E[Xij
2] = 12*(1/n) + 02*(1 – 1/n) = 1/n.

We observe that, with k ≠ j, Xij and Xik are independent.

This leads to:

E[XijXik] = E[Xij]*E[Xik] = (1/n)*(1/n) = 1/n2.

10/8/2013 18 91.404

Ch.8 – Linear Sorting

Bucket Sort

Substitute in the last equation two slides ago:

It follows that

E[T(n)] = Q(n) + n*O(2 – 1/n) = Q(n).

Note: the same result holds as long as the distribution

implies that the sum of the bucket sizes is linear in the

total number of elements.

 10/8/2013 19 91.404

E ni
2

1

n
j1

n

1

n2

1kn
k j

1 jn

 n
1

n
 n n 1

1

n2
1

n 1

n
 2

1

n

