
Algorithms 

Lecture10 

 



Linear Sorting 

Sorting by Comparisons 

Up to this point, all the sorting algorithms we examined 

depended on comparing elements of a given set, in 

order to sort the set. All the algorithms we came up with, 

were either O(n lg n) or Q(n lg n) or O(n2).  

One can ask: can we sort a set S, consisting of elements 

from a totally ordered universe, in time O(|S|)? 

The answer, as we might expect, is “yes, but…” 

 

First of all, the negative result: sorting by comparisons is 

(worst case) W(n lg n). 
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Linear Sorting 

.. 
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Linear Sorting 

The main ideas are:  

1.Every time you try to determine the relative positions of 
two element you must make a comparison (decision). 

2.The input (n elements) can come in any order. 

3.There are n! ways in which n different elements can be 
arranged. 

4.A “sort” is equivalent to finding (by a sequence of  
comparisons between two elements) the permutation of the 
input that leaves the input set ordered. 

5.Each such permutation corresponds to a leaf of the 
“binary decision tree” generated by the comparisons. 

6.The binary decision tree has n! leaves. 
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Linear Sorting 

Theorem 8.1: Any comparison sort algorithm requires       
W(n lg n) comparisons in the worst case. 

Proof: by the previous discussion, the binary decision tree 
has at least n! leaves, and height h. Since such a binary 
tree cannot have more than 2h leaves, we have n! ≤  2h. 
Taking the logarithm (base 2) of both sides: 

 h ≥ lg (n!) = W(n lg n), 

This means that there is at least ONE path of length h 
connecting the root to a leaf. 

 

Corollary 8.2: HEAPSORT and MERGESORT are 
asymptotically optimal comparison sorts. 
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Linear Sorting 

Sorting NOT by comparisons 

How do we do it?   

•  We must make some further assumptions.   

•  For example, we need to assume more than “the set to 

be sorted is a set of integers”.   

•  More specifically, we assume the integers fall in some 

range, say [1..k], where k = O(n). 

•  This is the idea behind Counting Sort. How do we use 

it? 
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Ch.8 – Linear Sorting 

.. 
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Ch.8 – Linear Sorting 

Counting Sort: Time Complexity 

How much time? 

• The for loop of l. 2-3 takes time Q(k). 

• The for loop of l. 4-5 takes time Q(n). 

• The for loop of l. 7-8 takes time Q(k). 

• The for loop of l. 10-12 takes time Q(n). 

• The overall time is Q(k + n). 

• The assumption on k gives that the overall time is Q(n). 
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Ch.8 – Linear Sorting 

Radix Sort l 

What else can we use? 

Assume all your integers (we are sorting sets of integers) 

have d or fewer digits. Pad the ones with fewer than d 

digits with leading 0s, for uniformity. 

Assume the digits are on cards with 80 or so vertical 

columns, each column with room for 10 (or more) distinct 

holes (one for each of 0..9).  

Use columns 1..d to store each integer. 

Take a deck of such cards (with integers) and sort it. 
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Ch.8 – Linear Sorting 

Radix Sort 
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Ch.8 – Linear Sorting 

Radix Sort 

Lemma 8.3.  Given n d-digit numbers in which each digit 

can take up to k possible values, RADIXSORT correctly sorts 

these numbers in Q(d(n + k)) time if the stable sort it uses 

takes Q(n + k) time. 

Proof: the correctness follows by induction on the column 

being sorted.  Sort the first column (using a stable sort). 

Assume the set is sorted on the first i columns (starting 

from the back); prove it remains sorted when we use a 

stable sort on the i+1st column (see Ex. 8.3-3). 

COUNTINGSORT on each digit will give the result (details?). 
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Ch.8 – Linear Sorting 

Bucket Sort 

Assume all the values have equal (independent) probability 

of appearing as elements of [0, 1). 

• Divide the interval [0, 1) into n equal sized subintervals 

(buckets) and distribute the n input numbers into the 

buckets. 

• Sort the numbers in each bucket (your choice of sort). 

• Go through the buckets in order, listing the contents. 
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Ch.8 – Linear Sorting 

Bucket Sort 
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Ch.8 – Linear Sorting 

Bucket Sort 

 

 

 

 

 

 

 

We observe that both of the for loops in l. 3-4 and 5-6 take 

time O(n) to execute. We need to analyze the cost of the n 

calls to INSERTIONSORT on l. 8. 
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Ch.8 – Linear Sorting 

Bucket Sort 

Let ni be the random variable denoting the number of 

elements in bucket B[i]. Since INSERTIONSORT runs in 

quadratic time, the running time for BUCKETSORT is 

 

The expected time is given by 

 

 

We will show that E[ni
2] = 2 – 1/n, for i = 0, 1, ..., n - 1. 

It should be clear that the expected number of items in 

each bucket is the same: by the uniform distribution. 
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Ch.8 – Linear Sorting 

Bucket Sort 

Define the indicator random variables 

Xij = I{A[j] falls in bucket i}, for i = 0, …, n - 1, j = 1, …, n. 

Thus  

 

To compute E[ni
2], we expand, square and regroup: 
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Ch.8 – Linear Sorting 

Bucket Sort 

We now compute the two sums. 

The indicator random variable Xij takes the value 1 with 

probability 1/n and 0 with probability 1 – 1/n.  The same is 

true of Xij
2: 

E[Xij
2] = 12*(1/n) + 02*(1 – 1/n) = 1/n.  

 

We observe that, with k ≠ j, Xij and Xik are independent. 

This leads to: 

E[XijXik] = E[Xij]*E[Xik] = (1/n)*(1/n) = 1/n2. 
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Ch.8 – Linear Sorting 

Bucket Sort 

Substitute in the last equation two slides ago: 

 

 

 

It follows that 

E[T(n)] = Q(n) + n*O(2 – 1/n) = Q(n). 

 

Note: the same result holds as long as the distribution 

implies that the sum of the bucket sizes is linear in the 

total number of elements. 
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